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Aortic aneurysms are defined as a pathological condition 
characterized by permanent dilation of the aorta that 

most commonly occurs in the infrarenal and proximal tho-
racic regions. While generally asymptomatic, progressive 
aneurysmal dilation is associated with the devastating con-
sequence of aortic rupture. Current therapeutic options to 
prevent aortic rupture are restricted to surgical repair, with 
an absence of proven pharmaceutical treatments to prevent 
progressive growth or rupture. Although surgical treatments 
have become increasingly sophisticated and less invasive over 
the previous decade,1 there remains an urgent need to iden-
tify pathways that predispose to aneurysmal formation and 
to divert treatment from surgical to medical approaches.2 An 
improved understanding of the subcellular mechanisms and 
regulatory networks triggering aneurysm development and 
subsequent expansion is essential for discovery of novel thera-
peutic targets. This article highlights recent publications in the 
journal of Arteriosclerosis, Thrombosis, and Vascular Biology 
that provide insights into understanding mechanisms and po-
tential therapeutic strategies for aortic aneurysms.

Abdominal Aortic Aneurysms
Human Studies
Abdominal aortic aneurysms (AAA) are the most common 
form of aneurysmal disease with dilation typically present-
ing in the infrarenal region. The incidence of AAA increases 
with age and is positively associated with smoking.3,4 
Population ultrasound screening studies have reported that 
the prevalence of AAA is 4% to 7% in males over the age of 
65, and 1% to 2% in females, with some studies indicating 
decreased AAA incidence.5,6 The falling prevalence of AAA 
in the developed countries has largely been credited to falling 
rates of tobacco use.7

Recently, several population studies have provided 
enhanced insights into pathological risk factors for AAA. 
Human AAA surgical samples are characterized by the pres-
ence of cholesterol crystals and macrophage infiltration.8 Two 

recent meta-analyses have demonstrated a potential role of 
lipoproteins in the pathogenesis of AAA.9,10 In addition, HDL 
(high-density lipoprotein) cholesterol concentrations have been 
shown to predict aneurysmal growth rate in a population-based 
prospective cohort study.11 To understand how HDL particles 
influence aneurysmal disease, Martínez-López et al12 analyzed 
the composition of HDL in AAA patients and the impact of 
HDL particles on macrophage cholesterol efflux. Patients with 
AAA exhibited lower apoA-I and plasma HDL cholesterol con-
centrations in comparison to control subjects. Further, ApoB-
depleted plasma from AAA patients displayed an impaired 
ability to promote macrophage cholesterol efflux, implicating 
impaired HDL function as a mechanistic association with AAA.

Within regions of AAA expansion, aneurysms com-
monly develop an intraluminal thrombus adjacent to regions 
of maximal aortic diameter.8,13 Finite element analyses using 
computed tomography angiography from AAA patients dem-
onstrated that cracks and fissures in the intraluminal thrombus 
increased wall stress on the underlying AAA wall.14 It also 
implicates that differences in intraluminal thrombus compo-
sition may result in different quantities and compositions of 
biologically active proteins accumulating near and within 
AAA tissue. To further investigate the effects of intraluminal 
thrombus on aortic aneurysm progression, one study15 per-
formed a single-center proteomic analysis of human tissue 
samples collected from the AAA wall and thrombus at the time 
of operative repair. These analyses demonstrated a negative as-
sociation between AAA growth rates and ECM (extracellular 
matrix) proteins and a large number of proteins related to cel-
lular functions, but a positive correlation between AAA growth 
and increased abundance of multiple plasma proteins within 
the intraluminal thrombus and arterial wall. These findings 
implicate that increased porosity of the intraluminal thrombus 
may have led to plasma proteins diffusing to the aortic wall.

Diabetes mellitus is associated with lower risk for AAA.16,17 
There is also experimental evidence that hyperglycemia atten-
uates AAA development in elastase or Ang II (angiotensin 
II)–induced AAA.18 Hemoglobin A1c reflects an average of 
blood glucose concentrations within an extended interval of 
≈3 months in humans. Using the participant information col-
lected from the VIVA (Viborg Vascular) randomized screen-
ing trials of the Central Denmark Region, Kristensen et al19 
reported that growth rates of AAA were inversely associated 
with concentrations of hemoglobin A1c. This study provides 
insights that long-lasting elevated blood glucose concentra-
tions impair progression of AAA in humans. However, mo-
lecular mechanisms by which hyperglycemia reduces the 
progression of AAA expansion remain unclear.

Animal Studies
Given the difficulty in defining mechanisms of AAA in 
humans, research has been relying heavily on the use of 
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animal models. A review by Sénémaud et al20 diligently dis-
cussed the similarities and differences among these models as 
well as their translational relevances.

Recently Reported AAA Models
A variety of animal models have been developed to better 
understand the pathophysiology of AAA. The 3 most com-
monly used mouse AAA models are adventitial exposure 
to calcium chloride, transient perfusion of elastase into the 
infrarenal aorta, and chronic subcutaneous infusion of Ang 
II.21–25 A spectrum of potential mechanisms of AAA devel-
opment have been studied using these mouse models in their 
original or modified forms. Unfortunately, none of these es-
tablished models fully recapitulate the human pathophysi-
ology of aortic aneurysmal disease.20 To address deficiencies 
of the present animal AAA models, several modifications 
have been described including coadministration of Ang II and 
a TGF (transforming growth factor)-β neutralizing antibody, 
as reported by several laboratories.26–28 Recently, Lareyre et 
al29 combined topical application of elastase with systemic 
inhibition of TGF-β, accomplished by intraperitoneal injec-
tion of a TGF-β neutralizing antibody. Elastase stimulation 
with inhibition of TGF-β led to progressive dilation of the 
infrarenal aorta and aortic rupture. Synchron-based high-
resolution imaging detected elastin degradation, adventi-
tial thickness, intraluminal thrombus, medial dissection, or 
rupture. Depletion of monocyte or genetic depletion of IL 
(interleukin)-1β in mice prevented aortic dilation and rupture 
in this mouse model. However, administration of an IL-1β 
neutralizing antibody did not improve aortic rupture when 
initiated 7 days after elastase application, implicating that 
inhibition of IL-1β would have no beneficial effects on pre-
existing AAA. We hope that future research would gain path-
ophysiologic insights into the human disease with extensive 
application of this mouse model.30

Sex Differences in AAA Pathology
Male sex is the most potent nonmodifiable risk factor for 
AAA, with estimates ranging from a 4- to 10-fold higher 
incidence in men than in women.31 Studies have shown that 
both gonadal sex hormones and sex chromosomes con-
tribute to the increased risk for Ang II–induced AAA in 
hypercholesterolemic mice.32,33 To evaluate the separate 
effects of gonadal sex hormones and sex chromosomes, 
Alsiraj et al34,35 used an inbred mouse strain with a nat-
ural mutation in the sex-determining Sry gene, which was 
substituted with an autosomal wild-type Sry transgene. 
Breedings generated phenotypic males with either XX or 
XY sex chromosomes. XY male mice primarily developed 
diffuse adventitial thickening throughout the thoracic and 
abdominal aorta, whereas XX male mice developed aneu-
rysms that were predominantly in the suprarenal abdom-
inal aorta. These striking differences in regional aortic 
pathology were abolished by castration. These findings im-
plicate that genes on the Y chromosome or X chromosome 
genes that escape X inactivation contribute to significant 
sex differences in regional aortic remodeling in response 
to Ang II infusion. Given the sexual disparities in aneu-
rysm pathology demonstrated in this and multiple other 
publications, the ATVB Council has recently established 

guidelines for designing and reporting sex as a biological 
variable in animal models of aneurysmal disease.36

Inflammatory Cell-Related Mechanisms
Histological analyses of human AAA surgical samples have 
revealed leukocytic infiltration, degradation of ECM, and dis-
ruption of vascular smooth muscle cell plasticity and func-
tions as 3 pathological hallmarks of AAA.37 The transmural 
inflammation observed in AAA involves a variety of inflam-
matory cell types, where macrophages and lymphocytes are 
the most prominent with mast cells and neutrophils migrating 
to a lesser extent.24,38

Within AAA, macrophages accumulate in the aortic media 
and adventitia.39 One signaling pathway shown to be involved 
in macrophage inflammation is FAK (focal adhesion kinase). 
Using human tissue specimens, Harada et al40 demonstrated 
that both FAK expression and activity were enhanced in AAA 
lesions. In vitro experiments revealed that FAK stimulated 
secretion of MCP-1 (monocyte chemotactic protein-1) and 
MMP (matrix metalloproteinase)-9 and positively regulated 
MCP-1–mediated chemotaxis. Pharmacological inhibition of 
FAK reduced macrophage accumulation and blocked CaCl

2
-

induced AAA progression.40 Overall, macrophages exist in ei-
ther a proinflammatory (M1) or anti-inflammatory (M2) state 
as revealed by the effects of cytokines, including IL-1β and 
TNF (tumor necrosis factor)-α. Previous investigations have 
demonstrated that M1 macrophage polarization promotes 
aneurysm formation in the CaCl

2
 model.41 Tnfα−/− macro-

phages expressed higher concentrations of M2 cytokines in 
contrast to Il1β−/− macrophages. Further, infusion of Tnfα−/− 
macrophages, but not Il1β−/− macrophages, inhibited AAA 
formation.42 IL-10 is an anti-inflammatory cytokine. Plasma 
concentrations of IL-10 have been shown to be lower in 
patients with AAA, compared with patients having coronary 
artery disease.43,44 Increased IL-10 by systemic transfection 
of an IL-10 expressing nonimmunogenic minicircle vec-
tor resulted in decreased AAA formation in Ang II–infused 
mice. These beneficial effects on aneurysm development were 
accompanied by a significant increase in regulatory T cells, 
and local macrophages were more likely to differentiate into 
the anti-inflammatory M2-phenotype.45

Beyond macrophage phenotype, macrophage function can 
also be regulated by epigenetic modification including microR-
NAs (miRs). The investigation by Nakao et al46 demonstrated 
that miR-33 was an important regulator of inflammatory cell 
function in AAA formation as mice with genetic deficiency 
of miR-33 displayed decreased AAA formation in response 
to Ang II infusion or calcium chloride application. Further, in 
vitro experiments revealed that peritoneal macrophages from 
miR-33−/− mice showed reduced MMP-9 expression via c-Jun 
N-terminal kinase inactivation. HDL cholesterol derived from 
miR-33−/− mice reduced expression of MMP-9 in macrophages 
and MCP-1 in vascular smooth muscle cells. In addition to 
inflammatory cell accumulation, markers of inflammasomes 
are present in plasma and AAA tissues.47,48 Wu et al48 demon-
strated that activation of the NLRP3 (NACHT, LRR [leucine-
rich repeat] and PYD [pyrin domain] domains-containing 
protein 3)-caspase-1 inflammasome cascade was associated 
with degradation of contractile proteins of the arterial wall. 
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Inhibition of the inflammasome pathway, by either genetic 
depletion of Nlrp3 or caspase-1 in mice or administration of 
glyburide inhibited Ang II–induced AAA formation.

CD4+ T cells have been found to be a highly prevalent 
cell type in end-stage aneurysmal human tissue. Through its 
profile of secreted cytokines, CD4+ T cells indirectly control 
matrix metabolism by recruitment of macrophages and reg-
ulation of ECM and protease synthesis.38 One important sig-
naling pathway for the communication of antigen-presenting 
cells, macrophages, and T Cells is the CD40-CD40 ligand in-
teraction. Kusters et al49 demonstrated that genetic deficiency 
of CD40 ligand resulted in decreased Ang II–induced AAA 
formation, accompanied by decreased macrophage and T-cell 
infiltration as well as reduced expression of MMPs.

Neutrophils are an essential component of the innate 
immune system.50 Previous studies have implicated poten-
tially important roles of neutrophils in AAA development.51 
Neutrophils are the first cell population recruited to the site 
of inflammation through the actions of chemokines in inflam-
matory vascular diseases. Investigation by He et al52 identified 
FAM3D (Family With Sequence Similarity 3, Member D) as a 
novel chemokine involved in AAA pathogenesis. FAM3D was 
markedly upregulated in both human and mouse AAA tissues. 
FAM3D deficiency or application of FAM3D-neutralizing an-
tibody 6D7 attenuated the development of elastase or CaPO4-
induced AAA in mice. The authors demonstrated that FAM3D 
exhibited its effects as a dual agonist of FPR (formyl peptide 
receptor) 1 and FPR2, inducing macrophage-1 antigen-medi-
ated neutrophil recruitment and aggravated AAA develop-
ment. An additional investigation into the effects of neutrophil 
recruit on AAA formation detailed the impact of neutrophil 
extracellular traps. Neutrophils contributed to elastase-induced 
AAA in mice associated with release of neutrophil extracel-
lular traps. Moreover, genetic depletion of IL-1β or adminis-
tration of Cl-amidine, an inhibitor of neutrophil extracellular 
trap formation, significantly attenuated AAA formation.53

Mechanisms Related to Disruption of the Aortic  
Wall Integrity
Permanent aortic dilation is a defining characteristic of aortic 
aneurysm formation. During initiation and development of 
AAA, the integrity of the aortic wall, particularly the smooth 
muscle cells, fibroblasts, and ECM, is compromised, as evi-
dent by altered smooth muscle cell phenotype, apoptosis, and 
increased activity of extracellular proteases present in the aneu-
rysmal vascular wall.54–56 Reactive oxygen species and oxidative 
stress play a vital role in AAA pathogenesis with the induc-
tion of inflammation, smooth muscle cell apoptosis, and ECM 
degradation.57 A recent study58 determined the ability to limit 
oxidative stress in the prevention of AAA formation by overex-
pressing human paraoxonase gene cluster, which reduced intra-
cellular oxidative stress and caspase activation. This transgenic 
approach in mice demonstrated that increased paraoxonase 
gene cluster expression suppressed Ang II–induced AAA for-
mation. Further, vascular smooth muscle cells from paraox-
onase gene cluster transgenic mice showed decreased reactive 
oxidative species and MMP-2 and MMP-9 activities.58

Recently, multiple studies have conducted in-depth anal-
ysis of mechanisms that compromise the integrity of the 

aortic wall. LRP1 (low-density lipoprotein receptor-related 
protein-1), a member of the LDL superfamily, has mul-
tiple functions including lipoprotein metabolisms as well as 
maintaining cardiovascular functions and the integrity of the 
aorta.59–66 Smooth muscle cell-specific deletion of LRP1 pro-
motes aortic dilation and fragmented elastin fibers in mice.64,67 
Au et al65 found that LRP1 was critical for regulating vascular 
smooth muscle cell contractile phenotype by controlling Ca2+ 
signaling events important for actin polymerization and cyto-
skeletal dynamics, which may be associated with mechanisms 
of AAA development.

Circadian disruption in aortic dissection and rupture has 
been reported previously,68,69 implicating a potential involve-
ment of circadian rhythmicity in pathophysiology of AAA 
development. Lutshumba et al70 investigated the impact of 
BMAL1 (brain and muscle ARNT-like protein-1) on AAA 
development, as global deletion of BMAL1 has been demon-
strated previously to cause complete loss of circadian rhyth-
micity. Within this study, smooth muscle cell-specific deletion 
of BMAL1 prevented AAA formation in mice administered 
aldosterone with high-salt intake and in mice infused with 
Ang II. This aortic protection was shown to be regulated by 
increased expression of Timp4, which led to inhibition of 
MMPs and prevention of elastin fragmentation.70,71

Although ECM degradation is a hallmark of aortic an-
eurysm formation, the underlying mechanisms behind this 
remodeling process remain unknown. Recently, several stud-
ies analyzed certain factors contributing to alteration of aortic 
ECM architecture. Fava et al72,73 used a proteomics approach 
for evaluating the effect of a metalloproteinase, ADAMTS-5, 
on AAA formation. Using mice lacking the catalytic subunit 
of ADAMTS-5 (Adamts5Δcat), the authors demonstrated that 
Adamts5Δcat exacerbated aortic aneurysm formation. This pro-
cess was driven by accumulation of versican, a large ECM 
proteoglycan, which has been linked to loss of ECM organiza-
tion and smooth muscle cell apoptosis.74

Another protein frequently shown to affect aortic aneu-
rysm formation is TGF-β.75 The impact of TGF-β on AAA 
formation remains controversial, with data supporting both 
pathogenic and protective roles.26,27,76,77 To gain insights into 
this controversy, a well-designed experiment was performed 
using mice with smooth muscle cell-specific deletion of TGF-
β signaling, as well as systemic neutralization of TGF-β ac-
tivity with an antibody, to evaluate their impact on aneurysmal 
disease.78 Systemic neutralization of TGF-β worsened abdom-
inal but not thoracic aortic pathology, whereas conditional de-
letion of TGF-β signaling in smooth muscle cells exacerbated 
thoracic but not AAA. It has been shown previously that TGF-
β protects the abdominal aorta from Ang II–mediated disease 
through effects on cell types other than smooth muscle cells26 
and that TGF-β signaling in smooth muscle cells protects the 
thoracic aorta from spontaneous or genetic aortic disease.28,79 
The advance of this recent study is that the effects of systemic 
or conditional inhibition of TGF-β signaling in both the tho-
racic and abdominal aortic regions were compared in the same 
murine model of Ang II–mediated aortic diseases.80

Adventitial fibrosis predominately mediated by adventi-
tial mesenchymal cells including fibroblasts and myofibro-
blasts also plays a crucial role in ECM remodeling. Yu et 
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al81 found that CYLD (cylindromatosis) was critical for the 
transdifferentiation of fibroblasts to myofibroblasts via the 
regulation of NOX (NADPH Oxidase) 4, which mediates 
homocysteinemia-aggravated AAA formation. Deletion of 
CYLD prevented CaPO4-induced AAA formation and ECM 
remodeling. IL-6 secretion mediated by RelA from adventitial 
fibroblasts promotes macrophage recruitment and AAA for-
mation.82 Ijaz et al83 expanded these previous findings using 
a RelAf/f; Col1α2-CreERT mouse model, which had RelA 
depletion in aortic fibroblasts and myofibroblasts, but not in 
endothelial cells. Infusion of Ang II into the RelAf/f; Col1α2-
CreERT mice decreased AAA formation and monocyte in-
filtration, in comparison to wild-type animals.83 This study 
provides evidence that mesenchymal RelA plays a causal role 
in Ang II–induced AAA.

Potential Novel Pathway
Proteins that relate to bone homeostasis may contribute to 
AAA formation and development.84,85 SOST (sclerostin) is 
a secreted cysteine-knot protein in bone, where it has been 
shown to control bone mineralization with limited studies 
investigating its role in vascular disease.86 One of the major 
regulatory roles of SOST is inhibition of the canonical Wnt 
(wingless-type mouse mammary virus integration site) signal-
ing pathway, which has been shown to play an important role 
in vascular remodeling.87 The publication by Krishna et al88 
exhibited that the SOST protein was downregulated in mouse 
AAA samples. Further, overexpression of SOST via either 
transgenic introduction of human SOST in apolipoprotein E 
deficient mice or administration of recombinant mouse SOST 
inhibited Ang II–induced AAA formation. As a translational 
corollary, the authors also demonstrated that SOST was down-
regulated in human AAA samples with a reciprocal upregu-
lation of the Wnt signaling pathway. In human samples, the 
downregulation of SOST is likely driven by increased DNA 
methylation of cytosine-phosphate-guanine islands in the 
SOST gene promoter. These findings support the concept that 
SOST upregulation could be a potential means to inhibit AAA 
in patients.

Potential Medical Therapies
There is no proven medical therapy to prevent AAA growth 
and rupture.89–91 Over the years, several therapeutic strategies 
have been investigated in murine models. However, few have 
been translated into clinical trials.55 In an attempt to expedite 
the translation of preclinical findings, several recent studies 
have examined effects of clinically approved pharmaceuticals 
in murine models. One study evaluated the effect of cilostazol 
on Ang II–induced AAA formation. Cilostazol is a selective 
inhibitor of phosphodiesterase III that is used commonly in 
patients with peripheral artery disease. Administration of cilo-
stazol (0.1% wt/wt) mixed in rodent diet, which approximated 
plasma cilostazol concentrations of patients who take 100 
mg daily, reduced Ang II–induced AAA formation.92 Another 
study determined the effect of resveratrol, a common dietary 
supplement, on AAA formation. Administration of resveratrol 
decreased AAA progression in mice.93 The authors also found 
that reduced suprarenal aortic dilation by resveratrol was as-
sociated with elevated serum angiotensin-converting enzyme 
2, the enzyme that cleaves Ang II to form Ang (1–7). Although 

further studies are needed to validate the above findings and 
their translational impact on clinical treatment, the fact that 
these pharmaceuticals are already available clinically for the 
treatment of other conditions may expedite this process.

Thoracic Aortic Aneurysms
The natural history of thoracic aortic aneurysms (TAA) is 
progressive enlargement of the thoracic aorta, which increases 
the risk for acute aortic dissection and rupture. The causes 
underlying TAA are diverse and range from degenerative or 
hypertensive associated aortic enlargement to less common 
genetic disorders, such as Marfan syndrome, Ehlers-Danlos 
syndrome, and other syndromic connective tissue diseases. 
National registries, such as Genetically Triggered Thoracic 
Aortic Aneurysms and Cardiovascular Conditions, have pro-
vided important resources for identifying many of the path-
ways that contribute to TAA formation. Over the past decade, 
there has also been rapid progress in identifying additional 
genes vital for the function and signaling pathways that pre-
dispose to TAA formation. A review by Milewicz et al94 
provides a detailed summary of the genetic mutations that 
predispose to TAA in humans. This review summarizes how 
genes encoding proteins critical for smooth muscle contractile 
function or mechanotransduction are vital for the maintenance 
of the structure of the ascending aorta throughout a lifetime.

The role of the TGF-β signaling pathway in TAA is con-
troversial. Early analyses of Marfan syndrome mice with non-
dissecting TAA (Fbn1C1041G/+ mice) concluded that aneurysm 
formation is largely accounted for by AT1a receptor-induced 
TGF-β hyperactivity.95 However, subsequent characteriza-
tion of Marfan syndrome mice with a more severe phenotype 
(Fbn1mgR/mgR mice) demonstrated protective effects of AT1a re-
ceptor inhibition but deleterious effects of TGF-β inhibition on 
TAA.96 The authors also investigated the impact of endothelial 
cell- or smooth muscle cell-specific deletion of AT1a receptor 
on TAA development in this Fbn1mgR/mgR Marfan mouse model. 
Deletion of AT1a receptor in endothelial cells reduced aortic 
rupture rate and mitigated aneurysm growth and media degen-
eration, whereas smooth muscle cell-specific AT1a receptor 
deletion did not reduce aneurysm growth or overall survival.97

MiR-21 is an important modulator for proliferation and 
apoptosis of vascular smooth muscle cells during AAA de-
velopment.98 This miR had an increased abundance in TAA 
isolated from human samples, which was associated with ac-
tivation of the mitogen-activated protein kinase.99,100 TGF-β 
signaling is mediated through phosphorylation of the canon-
ical pathway, including Smad (mothers against decapenta-
plegic homolog) 2/3 proteins, as well as the noncanonical 
pathway with activation of the mitogen-activated protein ki-
nase cascades. Ang II infusion augmented ascending aortic 
dilation in Smad3+/− mice. Opposite to the protective effects 
of miR-21 inhibition in AAA formation, deficiency of miR-
21 exacerbated aortic dilation with high mortality rate at early 
time points following Ang II infusion in Smad3+/− mice.101 
The authors further found that Smad7, a regulatory molecule 
involved in TGF-β signaling, was upregulated in Smad3+/−;
miR-21−/− mice resulting in suppression of canonical TGF-β 
signaling. Silencing of Smad7 in vivo prevented TAA forma-
tion and rupture in Smad3+/−;miR-21−/− mice. These results 
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implicate that TGF-β signaling plays a complex role in main-
taining the integrity of the aortic wall.

Summary
Aortic aneurysms in both abdominal and thoracic aortic re-
gions have complex pathophysiological features. In recent 
years, a considerable increase in research on aneurysm patho-
genesis has resulted in the discovery of novel mechanisms and 
implementation of clinical trials that seek to assess strategies 
for preventing aneurysm expansion. Despite progress on our 
understanding of aortic aneurysms, there are still many unan-
swered questions and conflicting findings requiring clarifica-
tion. This uncertainty highlights the importance of continual 
cooperation between preclinical and clinical researchers in 
validating findings from preclinical studies to the human di-
sease, to discover medical treatments that prevent or halt the 
progression of aortic aneurysmal disease. We hope that this 
brief review prompts interest in reading these highlighted arti-
cles and spurs further investigation into this complex and dev-
astating disease.
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