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Abstract: Interleukin-18 (IL-18), a recently
described member of the IL-1 cytokine super-
family, is now recognized as an important regu-
lator of innate and acquired immune responses.
IL-18 is expressed at sites of chronic inflamma-
tion, in autoimmune diseases, in a variety of
cancers, and in the context of numerous infec-
tious diseases. This short review will describe the
basic biology of IL-18 and thereafter address its
potential effector and regulatory role in several
human disease states including autoimmunity and
infection. IL-18, previously known as inter-
feron-� (IFN-�)-inducing factor, was identified as
an endotoxin-induced serum factor that stimu-
lated IFN-� production by murine splenocytes
[1]. IL-18 was cloned from a murine liver cell
cDNA library generated from animals primed
with heat-killed Propionibacterium acnes and
subsequently challenged with lipopolysaccharide
[2]. Nucleotide sequencing of murine IL-18 pre-
dicted a precursor polypeptide of 192 amino
acids lacking a conventional signal peptide and a
mature protein of 157 amino acids. Subsequent
cloning of human IL-18 cDNA revealed 65%
homology with murine IL-18 [3] and showed that
both contain an unusual leader sequence consist-
ing of 35 amino acids at their N terminus. J.
Leukoc. Biol. 73: 213–224; 2003.
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REGULATION OF INTERLEUKIN (IL)-18 GENE
EXPRESSION

Little is yet understood of detailed regulation of IL-18 at the
gene level. The murine IL-18 gene is composed of seven exons,
of which one and two are noncoding. At least two distinct
TATA-less IL-18 promoters have been identified. Promoter
activity upstream of exon 2 acts constitutively, whereas an area
upstream of exon 1 can be lipopolysaccharide (LPS)-activated
[4]. Furthermore, as the 3� untranslated region of human IL-18
mRNA lacks AUUUA destabilization sequences, these obser-
vations likely explain the constitutive expression of IL-18
mRNA in freshly isolated human peripheral blood mononu-
clear cells (PBMC), murine splenic macrophages, and nonim-
mune cells [5]. Additional studies have identified the tran-
scription factors interferon (IFN) consensus sequence-binding
protein (ICSBP) and PU.1 as being critical for the activation of

the IL-18 promoter upstream of exons 1 and 2, respectively [6].
ICSBP and PU.1 are themselves up-regulated by IFN-� [7–9].
IFN-� stimulation of macrophages has also been shown to
up-regulate IL-18 gene expression via ICSBP and activator
protein-1 (AP-1) elements [10]. Nuclear factor (NF)-�B recog-
nition sequences identified in the promoter region of IL-18
suggest the additional involvement of NF-�B in regulating
IL-18 gene expression.

IL-18 EXPRESSION AND SYNTHESIS

Commensurate with a proposed role in a variety of early
inflammatory responses, IL-18 has been identified in cells of
haemopoietic and nonhaemopoietic lineages. Thus, IL-18 ex-
pression has been reported in macrophages, dendritic cells
(DC), Kupffer cells, keratinocytes, osteoblasts, adrenal cortex
cells, intestinal epithelial cells, microglial cells, and synovial
fibroblasts [11–18]. However, without the enzymatic machinery
necessary for IL-18 processing, expression of IL-18 mRNA or
indeed pro-IL-18 protein should not necessarily infer the ca-
pacity to contribute biologic activity. The nature of native
stimuli for IL-18 expression remains under investigation but
includes at least LPS and FasL [19].

IL-18, like IL-1�, with which it shares structural homology,
is produced as a 24-kD inactive precursor lacking a signal
peptide (pro-IL-18). Pro-IL-18 is cleaved after Asp35 by the
endoprotease IL-1�-converting enzyme (ICE; caspase-1) to
generate a biologically active, mature 18-kD moiety [20, 21].
The importance of caspase-1 in IL-18 processing is highlighted
by the lack of IFN-� production by LPS-stimulated splenocytes
from ICE-deficient mice [22] and protection of caspase-1-
deficient mice from ischemic acute renal failure [23]. In hu-
mans, secretion of mature IL-18 by granulocyte macrophage-
colony stimulating factor (GM-CSF)-treated macrophages in-
fected with influenza or Sendai virus is abolished by caspase-1
inhibitors [24]. However, caspase-1 cleavage of pro-IL-18 is
not exclusive, as recent reports indicate that proteinase 3 can
also generate biological activity from pro-IL-18 [25]. In con-
trast, cleavage of pro-IL-18 or mature IL-18 at Asp71-Ser72
and Asp76-Asn77 by caspase-3 results in the generation of
biologically inactive peptides [26]. We have recently observed
that culture supernatants generated from human neutrophils
cleave recombinant pro- and mature IL-18 into a number of
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distinct moieties (unpublished data). We identified that this
activity resides in the serine proteases elastase and cathepsin
G. The biological significance of the latter remains unclear but
raises the fascinating possibility that neutrophil activation
during early responses may critically regulate the capacity of
IL-18 to contribute to the phenotype of subsequent adaptive
immune responses.

IL-18 RECEPTOR (IL-18R) AND SIGNALING

Like that of IL-1, the IL-18R complex is a heterodimer con-
taining an � (IL-1Rrp) chain responsible for extracellular
binding of IL-18 and a nonbinding, signal-transducing �
(AcPL) chain [27–29]. Both chains are required for functional
IL-18 signaling [30]. IL-18R is expressed on a variety of cells
including macrophages, neutrophils, natural killer (NK) cells,
endothelial, and smooth muscle cells [31–34]. The IL-18R
complex can be up-regulated on naı̈ve T cells, T helper cell
type 1 (Th1) cells, and B cells by IL-12 [28, 35]. IL-18R�
retention on the membrane of mature Th1 cells serves as a
marker for the latter in humans and murine systems [36]. In
contrast, T cell receptor (TCR) ligation in the presence of IL-4
results in down-regulation of the IL-18R [37]. Modulation of
this complex is therefore likely to be functionally significant.
Consistent with this, administration of anti-IL-18R� antibody
in vivo results in reduced LPS-induced mortality associated
with a subsequent shift in balance from a Th1 to a Th2 immune
response [36].

Upon binding of IL-18 to IL-18R�, IL-18R� is recruited to
form a high-affinity complex-inducing signaling pathways
shared with other IL-1R family members. These involve re-
cruitment of myeloid differentiation 88 and IL-1R-associated
kinase (IRAK) to the receptor complex and their activation
[38–40]. Thus, IL-18 shares downstream effector pathways
with critical immune regulatory molecules such as Toll-like
receptors, which are in turn implicated in regulating IL-18
expression [41, 42]. The signaling machinery therefore pro-
vides for numerous regulatory feedback loops, even at the
single-cell level. Following activation, IRAK autophoshory-
lates, dissociates from the receptor complex, and interacts with
the adaptor protein tumor necrosis factor receptor-associated
factor 6 (TRAF6) [43, 44]. Phosphorylation of NF-��-inducing
kinase and rapid induction of I�B� degradation allow NF-�B
nuclear translocation [45, 46]. Recently, dominant-negative
transfectants of I�B� have been shown to inhibit IL-18-depen-
dent I�B� degradation, NF-�B activation, and IFN-� expres-
sion by KG-1 cells [47]. In addition to IRAK/TRAF6 signaling,
recent evidence suggests a role for mitogen-activated protein
kinases (MAPK) in IL-18 signaling. Thus, activation of the
MAPK p38, extracellular signal-regulated kinases (ERK)
p44erk-1 and p42erk-2 by IL-18, was detected in a human NK
cell line [48]. In Th1-type cells, IL-18 has also been shown to
induce expression of GADD45�, which in turn binds MAPK-
ERK kinase 4 (MEKK4). GADD45� also activated the MAPK
p38. Moreover, GADD45� expression in naı̈ve T cells results
in selectively increasing cytokine but not TCR-induced IFN-�
production that could be abrogated by kinase-inactive MEKK4
or p38 inhibitors [49]. However, the ability of MEKK4 to

activate p38 requires further clarification [50, 51]. In addition
to IL-18-induced MAPK signaling, diminished NK cell activity
and IFN-� production by mice deficient in the transcription
factor tyk-2 in response to IL-18 suggest that like IL-12, IL-18
may also signal via tyk-2 [52]. Cooperation between IL-12 and
IL-18 signaling pathways extends further, as IL-12-induced
signal transducer and activator of transcription-4 has been
shown to enhance IL-18-induced AP-1 binding to and activa-
tion of the IFN-� promoter [53, 54]. Recently, use of phospha-
tidylinositol-3 kinase and NF-�B inhibitors suggested that both
were required for IL-18 induction of vascular cell adhesion
molecule-1 (VCAM-1) on synovial fibroblasts [55]. Further
studies in which the expression of IL-18R is systematically
examined for correlation with IL-18-dependent signaling are
ongoing in several laboratories.

FUNCTIONAL EFFECTS OF IL-18

Although originally identified as a factor capable of inducing
IFN-� production by murine splenocytes, the effector role of
IL-18 is rapidly expanding. Consistent effects on lymphoid
series, particularly Th1 lineage in combination with IL-12,
have emerged [2]. Thus, IL-18 enhances T and NK cell mat-
uration, cytokine production, and cytotoxicity [2, 35, 56, 57].
IL-18 also increases FasL on NK cells and consequent Fas-
FasL-mediated cytotoxicity [58, 59]. IL-18-deficient mice have
reduced NK cell cytolytic ability that can be restored by
exogenous IL-18 [60]. However, together with IL-2, IL-18
coinduces IL-13 in murine T and NK cells and in the presence
of TCR activation, induces T cell IL-4, IL-10, IL-13, and
IFN-� production [61, 62]. In isolation, IL-18 induces high
immunoglobulin E expression by B cells and in combination
with IL-2, anti-CD3, and anti-CD28, markedly enhances IL-4
production by CD4� T cells [63]. When cultured alone or in
combination with IL-4, IL-18 is known to induce murine T cell
Th2 differentiation. This however is dependent on genetic
influences, as spleen cells from BALB/c and C56BL/6 strains
of mice stimulated with anti-CD3 and IL-18 exhibit enhanced
Th2 and Th1 responses, respectively [64]. Thus, IL-18 can
promote Th1 or Th2 lineage maturation dependent on under-
lying genetic influences and the ambient cytokine milieu.

On non-T cell populations, IL-18, in conjunction with IL-3,
induces IL-4 and IL-13 production by bone marrow-derived
basophils [65]. Direct effects on macrophages and DC have
also been observed. Stimulation of bone marrow-derived mac-
rophages or splenic DC with IL-12 and IL-18 can induce
IFN-� production [66, 67]. Studies of knockout mice also
reveal that IL-18 stimulation of peritoneal macrophages in-
duces IL-6 production, independent of the intermediate induc-
tion of endogenous cytokines such as tumor necrosis factor �
(TNF-�) or IL-1� [68]. Macrophages derived from rheumatoid
arthritis (RA) synovial membrane but not peripheral blood
monocytes respond directly to IL-18 with TNF-� production.
Similarly, IL-18 promotes neutrophil activation, reactive oxy-
gen intermediate synthesis, cytokine release, and degranula-
tion [18, 31]. Recent studies suggest that IL-18 up-regulates
intracellular adhesion molecule-1 (ICAM-1) and VCAM-1 ex-
pression on endothelial cells and synovial fibroblasts [55].
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However, other nonhaemopoietic cell responses to IL-18 are
likely with direct effects on chondrocytes and cartilage matrix
degradation having been reported [69]. IL-18 has further been
shown to inhibit osteoclast formation via T cell GM-CSF pro-
duction [70]. Keratinocytes, traditionally thought to produce
but not process IL-18 [71], have now been shown to secrete
biologically active IL-18 when treated with dinitrochlorben-
zene and proinflammatory mediators such as LPS [72]. In
addition to keratinocytes, Langerhans cells (LC) also produce
IL-18 [12], which in turn contributes to the regulation of LC
migration [73].

NATURAL ANTAGONISTS TO IL-18

The discovery, cloning, and characterization of IL-18-binding
protein (IL-18BP), a constitutively secreted protein able to
bind IL-18 with high-affinity, provide a potential mechanism
whereby IL-18 activity could be regulated. Indeed, IL-18BP
inhibits IL-18-induced IFN-� and IL-8 production and NF-�B
activation in vitro and LPS-induced IFN-� production in vivo
[74, 75]. Via inhibition of IL-18-induced IFN-� production,
recombinant IL-18BP has also been shown to augment PBMC
prostaglandin production [76]. Recent studies have shown that
IL-18BP expression itself may be augmented by IFN-� [77]
and is up-regulated in sepsis [78], endothelial cells, and mac-
rophages during active Crohn[rsquo]s disease (CD) [79], sug-
gesting the existence of an endogenous, IFN-�-regulated feed-
back loop. Local levels of free IL-18 or IL-18 complexed with
IL-18BP are therefore likely vital in determining net IL-18
biological activity. Generated as a result of alternative mRNA
splicing, four human and two murine IL-18BP isoforms have
been identified. Human IL-18BPa and IL-18BPc and murine

IL-18BPc and IL-18BPd isoforms are capable of binding to and
neutralizing IL-18 [80]. In addition to IL-18BP, a homologous
protein p13 encoded by the ectromelia poxvirus has been shown
to bind to and inhibit human IL-18 activity in vitro [81].
Molluscum contagiosum viral proteins MC53 and MC54 inhibit
IL-18-induced IFN-� production and NK cell activity in a
similar manner as IL-18BP [82]. The recent discovery of
IL-1H, a protein with sequence homology to IL-1ra, which is
able to bind the IL-18R but not IL-1R [83], suggests the
possible existence of another IL-18R antagonist, although
functional data are awaited.

IL-18 AND HOST DEFENSE

IL-18 possesses broad and potent immunomodulatory proper-
ties. It is unsurprising therefore that it appears essential to host
defences against a variety of infections. First identified in the
livers of mice infected with Propionibacterium acnes and LPS
[84], IL-18 is particularly effective during the clearance of
intracellular bacteria, fungi, and protozoa, requiring the induc-
tion of host-derived IFN-�, which in turn evokes effector
pathways involving molecules such as nitric oxide (NO). IL-18
also plays a part in the clearance of viruses, partly through the
induction of cytotoxic T cells with viral clearance being im-
paired in IL-18-deficient mice. Key effects of IL-18 or IL-18R
deficiency are summarized in Table 1.

Bacterial infections

The intracellular pathogen Mycobacterium avium has been
widely studied using a variety of murine strains including
IL-18 and IL-18R-deficient mice. These studies show the
requirement for a strong Th1 response and a critical role for

TABLE 1.

Knockout Effect Reference

IL-18 Increased susceptibility to:
Leishmania major infection [85, 86]
Cryptococcus neoforms infection [87]
Streptococcus pneumoniae infection [88]
Plasmodium berghei infection [89]
Mycobacterial infection [90]

Increased severity of septic arthritis [85]
Increased LPS-induced endotoxic shock in P. acnes-primed mice [91]
Reduced:

Septicaemia following Staphylococcus aureus infection [85]
Collagen-induced arthritis (CIA) [92]
2,4,6-T-nitrobenzene sulfonic acid (TNBS)-induced colitis [93]
IFN-� in response to L. monocytogenes stimulation [94]
Severity of autoimmune encephalomyelitis [95]
LPS-induced shock [96]

Increased resistance to:
T Muris infection [97]
LPS-induced liver injury in P. acnes primed mice [91]

Impaired:
Microglial activation after influenza A infection [98]
Th1 response [60]
IFN-� response to Mycobacterium tuberculosis infection [99]

IL-18R Defective NK activity, reduced IFN-� production, impaired Th1 development [28]
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IL-18 in expulsion of the pathogen [60, 90, 100]. The contri-
bution of IL-18 during a protective Th1 response is further
demonstrated in human studies on patients with M. tuberculosis
infection who displayed a decreased ability to produce IL-18
and IFN-� in response to antigen compared with healthy
PPD-responsive controls [101]. Similarly, Kinjo and colleagues
[99] have recently demonstrated impaired IFN-� production in
IL-18-deficient mice following infection. However, patients
with advanced disease appear to have raised plasma IL-18
levels [102]. In leprosy, the Th1/Th2 balance is key to disease
outcome, but currently data on IL-18 are conflicting. In resis-
tant tuberculoid leprosy (TL), protective IFN-� production is
associated with increased IL-18 mRNA expression within le-
sions, and monocytes from TL patients show increased IL-18
mRNA expression following in vitro challenge with bacterial
antigen [103]. Furthermore, such in vitro challenge of T and
NK cells of TL patients resulted in increased IFN-� production
compared with cells from patients with susceptible leproma-
tous leprosy (LL). However Yoshimoto et al. [65] have shown
that serum IL-18 levels were much higher in an LL cohort.
IL-18 could therefore promote the development of the Th2
response, characteristic of LL. Further in vivo studies have
shown the importance of IL-18 in the protective immune re-
sponse to a number of bacterial infections including salmo-
nella, yersinia, chlamydiae, and shigella [104–107].

Viral infections

In addition to inducing IFN-�, IL-18 activates CD8� T cells
crucial for viral clearance. IL-18 is protective in a murine
model of Herpes simplex virus (HSV) infection [108]. Exoge-
nous administration of IL-18 before infection results in up-
regulated IFN-�-dependent NO production, leading to im-
proved survival. In an in vivo model of vaccinia infection,
IL-18 administration reduces pock formation [109]. Clearance
of neurovirulent influenza A-infected neurons by microglial/
macrophage cells is impaired in the brains of IL-18-deficient
mice [98]. Down-modulation of IL-18-induced immune re-
sponses by human papilloma virus (HPV) oncoproteins may

contribute to viral pathogenesis or carcinogenesis. This may
arise via HPV binding to the IL-18R, thus preventing IL-18
induction of IFN-� [110].

Although an early report suggested that IL-18 increased
human immunodeficiency virus (HIV)-1 production in a chron-
ically infected monocytic cell line [111], recent studies predict
a protective role with IL-18 inhibiting HIV-1 production by
peripheral blood cells [112]. In vaccine studies, the coinjection
of DNA encoding IL-18 modulates the specific immune re-
sponse toward a protective Th1 type [113]. Similarly, feline
leukemia virus (FLV) DNA vaccine efficacy is enhanced by
coadministration with IL-18 expression vectors [114].

Finally, immunomicroarray analysis reveals that T cells
infected with HHV-6 respond by inducing a type 1 immune
response. Thus, IL-18 production may play a significant role in
the development and progression of diseases associated with
HHV-6, including pediatric, hematologic, transplant, and neu-
rologic disorders [115]. In contrast, in vitro HHV-6 infection of
LPS-treated PBMC down-regulated IL-18 production, suggest-
ing that the down-regulation of a cytokine involved in the
induction of antiviral IFN-� is a strategy used by the virus to
evade a host response [116].

In a murine model of viral myocarditis, there was a reduction
in heart weight/body weight ratio in IL-18-treated mice and
TNF-� mRNA expression in myocardium [117]. IL-18 reduced
severity of viral myocarditis by inducing cardiac expression of
IFN-� and increasing NK activity [118]. In a coxsackie myo-
carditis model, the proinflammatory response involving IL-18
contributes to pathology seen in connective tissues in the
chronic stages of disease [119]. Other viral syndromes in which
IL-18 is documented are shown in Table 2.

Fungal infections

IL-18 in synergy with IL-12 promotes the antifungal response
to C. neoformans by inducing IFN-� from NK cells and NO
from macrophages [130, 139]. Thus, IL-18 administration dur-
ing C. neoformans infection results in an increase in IFN-� by
NK and T cells with a down-regulation of IL-4 production [130,

TABLE 2.

Bacterial Viral Fungal Protozoan

Potentially
protective

M. avium [60, 90, 100] HSV [108] Cryptococcus neoformans
[87, 130, 131]

L. major [85, 86, 134]

M. tuberculosis [101] Vaccinia [109]
Murine adenovirus [122]

Aspergillus fumigates
[132, 133]

Trypanosoma cruzi [135, 136]

Mycobacterium leprae [103, 120] Murine cytomegalovirus
[122, 123]

Plasmodium [89, 137, 138]

Salmonella typhimurium [104] HPV [110]
Yersinia enterocolitica [105] HIV [112, 113]
Chlamydiae trachomatis [106] FLV [114]
Shigella flexneri [107] Epstein-Barr virus [124]
P. acnes [84] Ectromelia [81]

Rubella [125]
Influenza A [98, 126]
Encephalomyocarditis

virus [127]
Potentially M. tuberculosis [102, 121] HIV [111, 128]

harmful M. leprae [65] Ebola [129]
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139, 140]. IL-18 appears effective even in the absence of IL-12
[87].

In a chronic fungal asthma model, IL-18 promotes innate
responses, preventing the development of severe fungus-in-
duced asthmatic disease [132]. In caspase-1-deficient mice,
IL-18 restores defective Th1 responses during Candida albi-
cans infection [133].

Protozoan infections

Murine models suggest that susceptibility and resistance to
infection with L. major depend on the production of IL-4 and
IFN-�, respectively [141, 142]. Several groups have reported
the protective role of IL-18 during infection. Using IL-18-
deficient mice, Wei and colleagues [85] reported increased
susceptibility. Neither IL-12 nor IL-18 alone induced wound
healing, whereas in synergy, footpad swelling was inhibited
through a NO-dependent pathway, and mice were protected
from further reinfection [86]. Neutralizing anti-IL-18 antibody
treatment markedly reduced protection. It is interesting that
although IL-18-deficient mice on a resistant background do
develop larger lesions during early disease, compared with
wild-type littermates, this eventually resolves [86, 134]. There-
fore, although IL-18 appears to control early disease, it is not
obligate for host immunity and the required development of a
Th1 phenotype [86, 134]. Protection from T. muris infection is
associated with a strong Th2 response. IL-18-deficient mice
are resistant to chronic nematode infection, and administration
of exogenous IL-18 to normally resistant strains results in
chronic disease. IL-18 directly suppresses the antigen-specific
IL-13- and IL-4-protective response, independent of IFN-�
production [97].

In severe combined immunodeficiency (SCID) mice, IL-18
augments NK cell-mediated immunity to Toxoplasma gondii
[143]. Similarly, IL-18 promotes healing in IL-12-deficient
mice, which have reduced capacity a priori to produce IFN-�
[144]. In contrast, extensive liver damage and lymphoid de-
generation during lethal infection with high virulence strains
associated with a strong Th1-type response are reported. High
levels of serum IL-18 are detected, and neutralizing anti-IL-18
antibodies can increase survival times [145]. Resistance to T.
cruzi requires the development of a successful IFN-� response,
which correlates with increased expression of IL-12 and IL-18
[135]. Finally, high levels of IL-18 are detected in mice in-
fected with P. berghei, and neutralizing anti-IL-18 antibodies
shortens survival times [137]. IL-18 is also implicated in host
defense by inducing IFN-� production during blood-borne
stages of disease [89]. Serum IL-18 rises in patients with
uncomplicated Plasmodium falciparum malaria who mount an
effective Th1 response [138].

IL-18 IN AUTOIMMUNE AND INFLAMMATORY
DISEASES

IL-18 expression and effector function has now been described
in inflammatory diseases across a broad range of tissues. We
have focused on recent key examples of a proinflammatory role
for IL-18. Activities in additional disease states, including a

role in cancer, have been discussed recently elsewhere [19,
146].

Inflammatory arthritis

IL-18 is present in synovial membrane of patients with RA [18,
147, 148] and with psoriatic arthritis (unpublished observa-
tions). Pro-IL-18 (24-kD) predominates, although mature IL-18
is consistently detected. IL-18 expression is localized in
CD14� and CD68� macrophages and in fibroblast-like syno-
viocytes (FLS) in situ. IL-18R (� and �) chains are detected ex
vivo, on up to 40% of synovial CD3� lymphocytes and on 20%
of synovial CD14� macrophages and in vitro on FLS. IL-18BP
may also be present in substantial concentrations [149–151].
These data clearly indicate that IL-18 and its receptor system
are present in inflammatory synovitis. Its functional activities
include promotion of cytokine release (particularly TNF-�,
GM-CSF, and IFN-�). Marked synergy with IL-12 and IL-15 is
observed in this respect. IL-18 acts not only through lympho-
cyte activation but also through direct effects on macrophages.
IL-18 expression is in turn up-regulated in FLS by IL-1� and
TNF-�, suggesting the existence of positive feedback loops
linking monokine predominance in RA with innate cytokine
production and Th/c1 cell activation in synovial immune re-
sponses. IL-18 induces NO release by RA SM in vitro, which
as NO inhibits caspase-1 activity, provides a further potential
regulatory loop. IL-18 possesses prodegradative effects in ar-
ticular cartilage. IL-18 reduces chondrocyte proliferation; up-
regulates inducible NO synthase, stromelysin, and cycloxyge-
nase-2 (COX-2) expression; and increases glycosaminoglycan
release in vitro. Such activities may be IL-1�-independent,
although contradictory data have also emerged [152]. IL-18
further promotes synovial chemokine synthesis and angiogen-
esis [153, 154]. Finally, IL-18 effects are not necessarily
detrimental. IL-18 inhibits osteoclast maturation through GM-
CSF production by T cells, thereby retarding bone erosion [70].
Suppression of COX expression may also be mediated through
IFN-� production with consequent effects on prostanoid-me-
diated local inflammation.

IL-18 has been targeted in several arthritis models in vivo.
Upon challenge with type II collagen (CII) in complete
Freund’s adjuvant (CFA), IL-18-deficient mice on a DBA/1
background exhibit reduced incidence and severity of arthritis.
Ex vivo analysis determined both cellular and humoral re-
sponses to CII were suppressed [92, 155]. Moreover, adminis-
tration of recombinant IL-18 can replace the requirement for
CFA in CII-induced erosive arthritis in DBA/1 mice [155].
Neutralization of IL-18 in vivo using specific antibodies or
IL-18BP effectively reduces developing and established rodent
arthritis in streptococcal cell wall and CIA models [152, 156].
Such effects may operate independent of IFN-� [152]. A fea-
ture of both models is suppression, not only of inflammation but
also of matrix destruction. These data strongly suggest that the
net effect of IL-18 expression is proinflammatory, at least in the
context of antigen-driven, articular inflammation. Clinical
studies to test this hypothesis in RA are awaited.

Insulin-dependent Diabetes Mellitus (IDDM)

Nonobese diabetic (NOD) mice, which spontaneously develop
insulitis as a result of �-islet destruction, are a useful model for
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human IDDM. IL-18 mRNA is up-regulated in NOD mice
treated with the diabetes-inducing agent cyclophosphamide,
and the murine IL-18 gene maps to the Idd2-susceptibility
locus, suggesting a potential role in the predisposition to IDDM
[157]. In a transgenic NOD model where the TCR from CD4�

diabetogenic T cells is overexpressed, IL-18 as well as IL-12
and TNF-� levels are raised [158]. Surprisingly, however, the
administration of exogenous IL-18 to diabetes-susceptible
mice delayed the onset of disease, presumably by interfering
with the Th1/Th2-immune balance within the pancreas [159].
The future development of IL-18-deficient NOD mice should
help clarify these issues. In support of a pathogenic role for
IL-18 in human disease, IL-18 serum levels are increased
during the early subclinical stages of IDDM [160].

Multiple Sclerosis (MS)

MS is characterized by myelin sheath inflammation, demyeli-
nation, and impaired nerve function [161]. Experimental auto-
immune encephalomyelitis (EAE) is a murine model of MS in
which the induction of myelin basic protein (MBP)-specific
CD4� T cells secreting cytokines, particularly IFN-� and
TNF-�, results in limb paralysis. There is evidence for IL-18
involvement in the disease process. High levels of IL-18
mRNA are found in the brains and spinal columns of EAE rats
at onset and during the disease [162, 163]. In an alternate
model of autoimmune encephalomyelitis, IL-18-deficient mice
mount a defective, autoreactive Th1 response and are resistant
to disease [95]. Up-regulation of the IL-12R by IL-18 results in
enhanced IFN-� production and exacerbated disease. In fur-
ther support of IL-18 involvement in MS, administration of a
neutralizing anti-IL-18 antibody partially protects animals
from disease and reduces the Th1-dominant anti-MBP T cell
response [162]. Furthermore, the brains taken from patients
with demyelinating MS exhibit up-regulation of IL-18 and
IFN-� mRNA with the accompanying accumulation of Th1-
specific T cells [164]. Finally, caspase-1-deficient mice exhibit
decreased disease severity, and cells taken from MS patients
have elevated caspase-1 levels [165, 166].

Gastrointestinal system

Parallels exist between effector mechanisms in inflammatory
bowel disease (IBD) and RA. Elevated IL-18 expression is
reported in IBD, particularly CD [16, 167–169]. Thus, IL-18 is
present in serum of CD patients, and bioactive IL-18 is de-
tected in CD mucosal biopsies. Moreover, in mucosal explant
cultures, IL-18 antisense suppresses IFN-� expression, indi-
cating a direct relationship between IL-18 expression and Th1
effector function [167]. IL-18BP isoforms are similarly up-
regulated in CD mucosa in epithelial cells and macrophages,
and IL-18/IL-18BP complexes are detected in tissues together
with free, mature IL-18 [79].

In vivo model systems indicate that in vitro observations are
of importance. Studies using several gene-targeted murine
strains suggested that IL-18 promotes colonic inflammation via
IFN-�-dependent but NO-, Fas-L-, and TNF-�-independent
pathways [170]. ICE-deficient mice exhibit reduced severity of
dextran sulfate (DS)-induced colitis associated with reduced
IL-18 expression [171]. DS colitis is ameliorated by anti-IL-18

antibody [172] or by IL-18BP:Fc protein [173]. The latter
effectively suppresses DSS colitis in vivo associated with a
reduction in mucosal cytokine, chemokine, and metalloprotein-
ase gene expression [173]. Similarly, colitis is associated with
increased, local IL-18 expression [168], and IL-18-deficient
mice fail to develop disease [93]. IL-12p40-deficient mice
develop increased severity of TNBS-induced colitis associated
with enhanced IL-18 expression, suggesting interactions be-
tween IL-12 and IL-18 in colonic mucosa [174]. Finally, trans-
fer of CD62L� CD4� T cells into SCID mice induces CD-like
mucosal inflammation associated with high IL-18 expression.
Administration of adenovirus containing IL-18 antisense effec-
tively reduces inflammation in this model [175]. Together,
these data strongly implicate IL-18 as an important mediator of
gastrointestinal inflammation.

Pulmonary disease

A prominent role in pulmonary inflammation is suggested by
studies in human tissues and in rodent models. The effects of
IL-18 in airway inflammation are not easily predicted, as it can
promote Th1 and Th2 responses. In general, it appears that
IL-18 is primarily a negative regulator of Th2-mediated air-
ways hyper-reactivity (AHR) but can promote pulmonary gran-
uloma formation and subsequent lung parenchymal damage.
Thus, IL-18 expression is enhanced in pulmonary infiltrates in
sarcoidosis patients [176], whereas reduced levels are found in
asthmatic subjects [177]. IL-18 is detected at significantly
reduced levels in bronchoalveolar lavage fluid and in alveolar
macrophage cultures derived from asthmatic donors compared
with healthy controls. IL-18-deficient mice challenged with
ovalbumin exhibit marked eosinophilia together with exagger-
ated lung damage compared with controls. IL-18 administra-
tion reverses such effects [178]. In the same model, IL-12
administration reduces the severity of AHR, eosinophilia, and
T cell infiltration associated with increased IL-18R expression,
suggesting that IL-18 could promote resolution of local inflam-
mation induced by an ongoing Th2 response [179]. Commen-
surate with this, adenoviral delivery of IL-18 in established
ovalbumin-induced AHR reduces AHR, IL-4 production, mu-
cus expression, and eosinophilia [180]. IL-18 similarly sup-
presses immune complex-mediated changes in lung vascular
permeability, whereas IL-18 neutralization increases inflam-
matory parameters [181]. However, IL-18 increases eosinophil
IL-8 release in vitro [182] and may also increase local eosin-
ophil accumulation in vivo, in part via eotaxin release in the
cockroach allergen-induced model [183]. These data together
with the in vitro effects on Th2 maturation suggest that the
precise effect of IL-18 may depend on the kinetics and nature
of specific pulmonary antigen responses.

Other inflammatory disease states

IL-18 expression has been described in a number of additional
disease states. It is found together with a functional receptor in
human atheroma tissues, predominantly in macrophages. IL-18
induces IL-6, IL-8, ICAM-1, and matric metalloproteinase
expression in vascular smooth muscle cells, endothelial cells,
and macrophages [33]. Unexpectedly, IL-18 together with
IL-12 also promoted IFN-� expression in smooth muscle cells.
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Enhanced IL-18 expression has also been detected in acute
and chronic hepatitis, systemic lupus erythematosis, psoriasis,
and adult onset Still[rsquo]s disease [71, 72, 151, 184–187].
Very high serum levels of IL-18 are detected in the latter,
which are equivalent to those detected in neoplastic and hae-
mophagocytic syndromes in which cytokine dysregulation has
been related to systemic clinical features such as fever and
lymphadenopathy and with disease activity. However, there
exist few clinical studies that clearly implicate IL-18 in disease
pathogenesis, and many data remain circumstantial.

CONCLUSION

Data generated thus far indicate that IL-18 contributes to host
defense and to inflammation through synergism in a cascade of
cytokines associated with innate responses, including IL-12
and IL-15. Important questions remain. In particular, the
means whereby IL-18 synthesis is regulated, and subsequent
release of cytokine is mediated are poorly understood. Simi-
larly, regulation of IL-18 bioactivities in vivo in the context of
high levels of IL-18BP and other native inhibitors requires
clarification. Finally, the position of IL-18 in the functional
hierarchy of proinflammatory cytokines in chronic inflamma-
tion is not fully resolved, although there is consensus that it
plays a critical, early role. Nevertheless, IL-18 appears able to
modulate inflammation at multiple checkpoints, acting not only
on initiation and expansion of putative autoreactive Th/c1
responses but also via direct effects on multiple cellular tar-
gets, including macrophages, lymphocytes, and target host
tissue cells—endothelial cells and fibroblasts. As such, it
deserves consideration as a therapeutic target.
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