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Aims Renal inflammation, leading to fibrosis and impaired function is a major contributor to the development of hypertension.
The NLRP3 inflammasome mediates inflammation in several chronic diseases by processing the cytokines pro-interleukin
(IL)-1b and pro-IL-18. In this study, we investigated whether MCC950, a recently-identified inhibitor of NLRP3 activity,
reduces blood pressure (BP), renal inflammation, fibrosis and dysfunction in mice with established hypertension.

....................................................................................................................................................................................................
Methods
and results

C57BL6/J mice were made hypertensive by uninephrectomy and treatment with deoxycorticosterone acetate (2.4mg/day, s.c.)
and 0.9% NaCl in the drinking water (1K/DOCA/salt). Normotensive controls were uninephrectomized and received normal
drinking water. Ten days later, mice were treated with MCC950 (10mg/kg/day, s.c.) or vehicle (saline, s.c.) for up to 25days.
BP was monitored by tail-cuff or radiotelemetry; renal function by biochemical analysis of 24-h urine collections; and kidney in-
flammation/pathology was assessed by real-time PCR for inflammatory gene expression, flow cytometry for leucocyte influx,
and Picrosirius red histology for collagen. Over the 10days post-surgery, 1K/DOCA/salt-treated mice became hypertensive,
developed impaired renal function, and displayed elevated renal levels of inflammatory markers, collagen and immune cells.
MCC950 treatment from day 10 attenuated 1K/DOCA/salt-induced increases in renal expression of inflammasome subunits
(NLRP3, ASC, pro-caspase-1) and inflammatory/injury markers (pro-IL-18, pro-IL-1b, IL-17A, TNF-a, osteopontin, ICAM-1,
VCAM-1, CCL2, vimentin), each by 25–40%. MCC950 reduced interstitial collagen and accumulation of certain leucocyte sub-
sets in kidneys of 1K/DOCA/salt-treated mice, including CD206þ (M2-like) macrophages and interferon-gamma-producing
T cells. Finally, MCC950 partially reversed 1K/DOCA/salt-induced elevations in BP, urine output, osmolality, [Naþ], and
albuminuria (each by 20–25%). None of the above parameters were altered by MCC950 in normotensive mice.

....................................................................................................................................................................................................
Conclusion MCC950 was effective at reducing BP and limiting renal inflammation, fibrosis and dysfunction in mice with estab-

lished hypertension. This study provides proof-of-concept that pharmacological inhibition of the NLRP3 inflamma-
some is a viable anti-hypertensive strategy.
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1. Introduction

Through baroreceptor-mediated detection of changes in blood pressure
(BP), and subsequent regulation of Naþ/H2O re-uptake, the kidneys play a
major role in BP homeostasis.1,2 However, chronic exposure to excessive
salt, as occurs with a western diet, impairs the ability of the kidneys to
maintain the pressure-natriuresis relationship, resulting in hypertension.3,4

Although there is debate around the precise mechanisms by which high
salt promotes renal dysfunction, there is a growing body of evidence to
suggest that inflammation is an important factor. In experimental models,
salt-sensitive hypertension is associated with increased renal expression of
pro-inflammatory molecules including cytokines, chemokines, and adhe-
sion molecules.5–7 This leads to the accumulation of macrophages and T
cells in the tubulointerstitium, which in turn promote tissue damage, fibro-
sis and dysregulation of Naþ transport.5–8 Therefore, further understand-
ing of the mechanisms that cause the immune system to become activated
during salt-sensitive hypertension may lead to novel. pharmacological
treatment options and better management of the condition in the clinic

Inflammasomes are cytosolic signalling complexes that sense danger
signals emanating from pathogens or damaged host cells and then re-
spond by initiating an inflammatory cascade.7,9 Of the inflammasomes
identified to date, the NLRP3 inflammasome is the best characterized,
consisting of a pattern recognition receptor, NLRP3; an adaptor protein,
ASC; and the effector molecule, caspase-1.7,9 The NLRP3 inflammasome
recognizes a diverse range of pathogen- and host-derived danger-associ-
ated molecular patterns (PAMPs and DAMPs, respectively) including
bacterial lipopolysaccharides, reactive oxygen species, microcrystals, and
high concentrations of salt.10,11 Following detection of PAMPs or
DAMPs, the subunits of the NLRP3 inflammasome oligomerize, resulting
in auto-cleavage, and activation of caspase-1. Caspase-1 then proteolyti-
cally cleaves pro-interleukin (IL)-1b and pro-IL-18 into their active forms,
which are released from the cell of origin and target neighbouring cells
to propagate an inflammatory response.9

Inflammasomes are well established as crucial mediators of inflamma-
tion in several chronic inflammatory diseases such as rheumatoid
arthritis,12 gout,13 Alzheimer’s Disease,14 and atherosclerosis.15 More
recently, studies by our group and others using a variety of experimental
models have shown that the development of hypertension and its associ-
ated renal inflammation is at least partially dependent on the presence of
a functional NLRP3 inflammasome complex.7,16,17 This implies that
inflammasomes could represent a novel target for therapies to amelio-
rate renal dysfunction and BP in hypertension.

MCC950 is a diarylsulfonylurea-containing compound that was shown
in vitro to potently (i.e. at nanomolar concentrations) and selectively
inhibit the oligomerization and activation of the NLRP3 inflammasome in
response to canonical and non-canonical stimuli.18 The precise molecu-
lar mechanism by which MCC950 inhibits inflammasome assembly is
unclear but it does not appear to involve blocking potassium efflux from
the cell, inhibiting calcium signalling, or directly interfering with NLRP3-
NLRP3 or NLRP3-ASC protein–protein interactions.18 MCC950 is also
effective at inhibiting inflammasome activation in vivo. Coll et al.18 showed
that treatment with MCC950 had protective effects in two experimental
models of NLRP3-associated diseases; experimental autoimmune
encephalitis and Muckle–Wells syndrome. Moreover, in a pilot study,
we provided preliminary evidence that MCC950 was effective at

lowering tail cuff BP and a limited selection of pro-inflammatory cyto-
kines in the kidneys of mice with one-kidney, deoxycorticosterone ace-
tate and salt (1K/DOCA/salt)-induced hypertension.7 Thus, in this study,
we sought to extend these findings and gain insight into the physiological
processes underlying the anti-hypertensive effects of MCC950 by com-
prehensively examining its effects on multiple haemodynamic parame-
ters (e.g. mean arterial pressure, diastolic BP, heart rate), immune cell
activation, renal pathology and function.

2. Methods

Refer to Supplementary material online for an expanded Methods.

2.1 Animals
Male C57BL/6J mice, aged 10–12 weeks and weighing 25–30 g were
used. All animal procedures were performed with institutional ethics ap-
proval (Ethics number: MARP/2013/043) in accordance with the
Australian Code for the Care and Use of Animals for Scientific Purposes
(8th Edition, 2013).

2.2 Induction of hypertension and
treatment of mice with MCC950
A salt-sensitive model of hypertension was used in this study wherein
mice were uninephrectomized (1K) and treated with deoxycorticoster-
one acetate (DOCA; 2.4 mg/day, s.c.; Innovative Research of America,
USA) and 0.9% saline (p.o.).7 Normotensive control mice were unineph-
rectomized and maintained on normal drinking water post-surgery
(1K/placebo). Ten days after induction of hypertension, mice were ran-
domly assigned to commence treatment for up to 28 days with either
MCC950 (10 mg/kg/day, s.c.) or vehicle (0.9% saline, 0.5mL/h, s.c.) via im-
plantation of micro-osmotic minipumps (Alzet, USA). Note, in pilot
studies (n = 3–8 per group), mice with established 1K/DOCA/salt-in-
duced hypertension were treated for 11 days with three different doses
of MCC950 (2, 5, and 10 mg/kg/day) to establish an optimal antihyper-
tensive dose. The 10 mg/kg/day dose, which is equivalent to that used in
previous studies to inhibit NLRP3-mediated processes in mice,19,20

caused a steady state blood concentration of MCC950 of 6.3± 0.3lM
(n = 8) and was the only dose effective at reducing BP (data not shown).
Moreover, there were no apparent signs of toxicity, which was later con-
firmed via a Kaplan–Meier comparison of survival of the MCC950- vs. ve-
hicle-treated mice included in the main study (see Supplementary
material online, Figure S2).

2.3 Monitoring of blood pressure
BP was monitored either via tail-cuff plethysmography or
radiotelemetry.7,21

2.4 Gene expression in the kidney
Following treatment, mice were killed via CO2 asphyxiation and the right
kidney was excised and cut in half along the coronal plane. One half of
the kidney was used immediately for flow cytometric analysis, while the
other half was either snap-frozen in liquid N2 and stored at -80�C for
RNA extraction or fixed in 10% formalin and stored at -20�C for immu-
nohistochemistry. Upon removal from -80�C storage, kidney halves
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were pulverized and RNA extracted using the RNeasy Mini Kit (Qiagen,
Germany). RNA was reverse transcribed to cDNA (Applied Biosystems,
USA) and used as a template in real-time PCR with commercially-
available predesigned TaqManVR primer/probe sets (Life Technologies,
USA). GAPDH was used as a house-keeping gene.7 Real-time PCR was
performed in a Bio-Rad CFX96 Real-Time PCR Detection System (Bio-
Rad Laboratories, USA) and the comparative Ct method was used to
calculate the fold-change in mRNA expression relative to the control
samples i.e. 1K/placeboþ vehicle-treated mice.22

2.5 Flow cytometry
Flow cytometry was performed on cell suspensions derived from freshly
isolated kidney halves that had undergone a combination of manual and
enzymatic digestion, and Percoll gradient centrifugation to isolate mono-
nuclear cells. Cells were stained for 15 min at 4�C with Live/Dead Aqua
Stain (Life Technologies, USA), followed by the antibody cocktail listed
in Supplementary material online, Table S1. Cells were then re-
suspended in flow cytometry buffer (1% bovine serum albumin in PBS)
containing 1% formalin. For detection of interferon-gamma (IFN-c)-pro-
ducing T cells, kidney mononuclear cells were stimulated with phorbol
myristate acetate (PMA; 50 ng/mL) and ionomycin (20 ng/mL) for 5 h in
the presence of Golgiplug/Golgistop (BD Biosciences, USA). Cells were
then stained for surface markers as described above, before being fixed,
permeabilized, and incubated with an anti-IFN-c antibody at room tem-
perature for 20 min. All samples were analysed using a Fortessa X-20 in-
strument controlled by FlowDiva software (BD Biosciences). Data were
analysed using FlowJo software v10 (FlowJo, USA; see Supplementary
material online for the gating strategy).

2.6 Histopathology staining
Fixed, paraffin-embedded kidney sections (4 or 10 lm) were incubated
with Celestine blue to stain for nuclei, and counterstained with haema-
toxylin (Amber Scientific, Australia) and either 0.3% Picrosirius red solu-
tion (Polysciences Inc., USA) or eosin (Amber Scientific, Australia).
Sections were imaged using a bright-field (Leica Biosystems, Germany)
or polarized microscope (Olympus, Japan) and analysed for percentage
collagen content by ImageJ. Changes in renal tubular structure were
assessed using a four-point scoring system as follows: 0 = no damage;
1 = mild damage (<25% tubules affected); 2 = moderate damage
(25–50% of tubules affected); and 3 = severe damage (>50% of tubules
affected). Quantification/scoring of Picrosirius red staining and renal his-
topathology parameters was performed by investigators who were
blinded to the in vivo treatment corresponding to each sample.

2.7 Assessment of kidney function using
metabolic cages
Mice were housed individually in metabolic cages for 24 h intervals on
three separate occasions: day -1 to obtain baseline parameters; day 9 to
assess the impact of 1K/DOCA/salt treatment on kidney function; and
day 20 to assess the impact of MCC950 vs. vehicle treatment. On each
occasion the volume of water/saline intake and urine output was mea-
sured, as was urine osmolality (Advanced Osmometer 2020; Advanced
Instruments, USA), Naþ concentration (RAPIDChem744, Siemens,
Germany) and albuminuria (Albuwell M, Exocell, USA).

2.8 Statistical analysis
Unless otherwise stated, results are expressed as mean ± standard error of
mean (SEM). Data were analysed either by Student’s unpaired t-test or by

one- or two-way analysis of variance (ANOVA). Post hoc analyses included
Newman–Keul’s tests (for parametric data) or Kruskal–Wallis tests (for
non-parametric data). P< 0.05 was considered to be statistically significant.

3. Results

3.1 Intervention with MCC950 reduces BP
in mice with established hypertension
Consistent with our previous report,7 1K/DOCA/salt treatment in mice
caused a rapid increase in systolic BP (measured by tail cuff) which reached
a plateau of approximately 30–35 mmHg above baseline within 10 days
post-surgery (Supplementary material online, Figure S3A). In mice that were
subsequently treated with the vehicle for MCC950, systolic BP continued
to rise gradually over the following 11 days (Supplementary material online,
Figure S3A). In contrast, in mice that received 10 mg/kg/day of MCC950, sys-
tolic BP gradually decreased such that after 11 days, BP was �20 mmHg
lower in MCC950- than in vehicle-treated animals (Supplementary material
online, Figure S3A). A common consequence of high BP is cardiac hyper-
trophy.23 1K/DOCA/salt-induced hypertension was found to increase the
ratio of heart weight to body weight compared to normotensive mice
(Supplementary material online, Figure S3B). Importantly, hypertensive mice
treated with MCC950 displayed blunted cardiac hypertrophy
(Supplementary material online, Figure S3B). In normotensive animals, sys-
tolic BP remained unchanged during the first 10 days after surgery, and both
systolic BP and heart weight to body weight ratio were not further altered
by MCC950 (Supplementary material online, Figure S3A and B).

Radiotelemetry was performed in a subset of mice to further
characterize the effects of MCC950 on haemodynamic parameters during
1K/DOCA/salt-dependent hypertension. Similar to that observed using
tail cuff plethysmography, 1K/DOCA/salt treatment caused a
30–40 mmHg increase in systolic BP over the first 10 days (Figure 1A,
Supplementary material online, Figure S4A). Similar increases were ob-
served for both diastolic BP and MAP (Figure 1B and C, Supplementary ma-
terial online, Figure S4B and C). Also consistent with findings from tail cuff
studies, the MCC950 intervention afforded protection against 1K/DOCA/
salt-induced hypertension, such that by the end of the 28 day treatment
period, all three BP parameters (i.e. systolic BP, diastolic BP and MAP)
were approximately 10–12 mmHg lower in MCC950- vs. vehicle-treated
mice (Figure 1A–C). Heart rate was not significantly different between the
MCC950- and vehicle-treated groups, before or after the drug interven-
tion period (Figure 1D, Supplementary material online, Figure S4D).

3.2 MCC950 reduces expression of
inflammatory markers and leucocyte
infiltration in kidneys of 1K/DOCA/
salt-treated mice
Real-time PCR revealed that 1K/DOCA/salt-induced hypertension was
associated with increased renal mRNA expression of NLRP3, ASC, pro-
caspase-1, pro-IL-1b, and pro-IL-18 (Figure 2A–E), confirming that this
model of hypertension is associated with priming of the inflammasome/IL-
1b/IL-18 signalling system in the kidneys. Likewise, increases in expression
of several additional pro-inflammatory genes were also observed including
the cytokines IL-6, IL-17A, tumour necrosis factor-alpha, and IL-12
(Figure 3A–D); the adhesion molecules, intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) (Figure 3E and
F); the chemokine, CC-motif chemokine ligand 2 (CCL2; Figure 3G); and a
marker of tubular damage, osteopontin (Figure 3H). Treatment of
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hypertensive mice with MCC950 reduced the expression of most of
these genes by 25–40% (Figures 2 and 3), with the exceptions being IL-6
(for which the trend towards a 30% reduction was not statistically signifi-
cant) and IL-12. Notably, MCC950 had no effect on basal levels of expres-
sion of any of these genes in normotensive mice (Figures 2 and 3).

Chemokines and adhesion molecules are important mediators of
leucocyte trafficking into tissues. Consistent with its effects on CCL2,
ICAM-1, and VCAM-1 expression, 1K/DOCA/salt-treatment caused an
accumulation of leucocytes in the kidney (Figure 4A). This included an in-
crease in CD3þ T cells, and in particular the CD4þ subset, with no signif-
icant change in CD8þ T cells (Figure 4B and D). Previous studies have
shown that IL-1b and IL-18 can act in concert with IL-12 to promote the
production of the T cell-derived pro-inflammatory cytokine interferon-
gamma (IFN-c).24 Given that expression of IL-1b, IL-18, and IL-12 were
all up-regulated in kidneys of mice with 1K/DOCA/salt-induced hyper-
tension, we investigated whether there might also be an increase in T
cell-dependent production of IFN-c. Although overall expression levels
of IFN-c were not significantly altered in whole kidney homogenates
from 1K/DOCA/salt-treated mice (data not shown), there was a three-
fold increase in IFN-c-producing T cells (Figure 4E). Of note, MCC950
markedly inhibited the accumulation of total leucocytes and T cells in the
kidneys of 1K/DOCA/salt-treated mice (Figure 4A–D), including those
that produced IFN-c (Figure 4E).

In addition to the accumulation of T cells, 1K/DOCA/salt-induced
hypertension in mice was associated with marked increases in numbers
of myeloid lineage cells (CD45þCD11bþ) and macrophages
(CD45þCD11bþF4/80þ) in the kidneys, with further analysis of the mac-
rophage subsets revealing that there was a significant increase in the

‘M2’-(F4/80þCD206þ) but not the ‘M1’-like (F4/80þCD206-) phenotype
(Figure 5A–D). Treatment of 1K/DOCA/salt hypertensive mice with
MCC950 mice reduced total myeloid cell and macrophage numbers in the
kidneys (Figure 5A and B). More specifically, MCC950 treatment appeared
to have its largest effects on the M2-like macrophage population
(Figure 5C). Again, MCC950 had no effect on baseline kidney numbers of
any of these leucocyte subsets in normotensive mice (Figures 4 and 5).

3.3 MCC950 reduces the accumulation of
collagen in the kidneys of 1K/DOCA/
salt-treated mice
Kidney sections from 1K/DOCA/salt-treated mice displayed an approxi-
mately three-fold increase in renal interstitial collagen protein expression
compared with normotensive mice, whether assessed by bright field or
polarized microscopy (Figure 6A and B). Treatment with MCC950 re-
duced collagen deposition by approximately 30% in mice with 1K/
DOCA/salt-induced hypertension but had no effect on the amount of
collagen protein in kidneys of normotensive mice (Figure 6A and B).

The increase in collagen protein in kidneys of 1K/DOCA/salt-treated
mice was reflected at the gene level with mRNA expression of four of the
predominant renal collagen subtypes (I, III, IV, and V) elevated compared
with kidneys from 1K/placebo-treated mice (Figure 6C–F). Renal mRNA
expression of the pro-fibrotic cytokine, transforming growth factor-beta
(TGF-b), was also significantly increased by 1K/DOCA/salt-treatment, as
was that of the marker of epithelial-mesenchymal transition (EMT), vimen-
tin (Figure 6G and H). Treatment with MCC950 reduced mRNA expres-
sion of TGF-b and vimentin, along with collagen III, IV, and V (Figure 6C–H).

A B

C D

Figure 1 MCC950 reduces BP in mice with 1K/DOCA/salt-induced hypertension. Effects of 1K/DOCA/salt and MCC950 on systolic BP (A), diastolic
BP (B), mean arterial pressure (C), and heart rate (D) measured by radiotelemetry at 10 min-intervals and plotted as an average over a 3-day period.
All values are expressed as mean ± SEM. *P < 0.05; ns, not significant for one-way ANOVA or two-way repeated-measures ANOVA followed by
Newman–Keuls post hoc test as appropriate.
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.Analysis of haematoxylin and eosin-stained sections from 1K/DOCA/
salt-treated mice also revealed significant damage to the tubular architec-
ture as evidenced by tubular dilatation, tubular atrophy, and a loss of epi-
thelial brush borders on the luminal surface of proximal tubules
(Supplementary material online, Figure S5). While there was a trend for
MCC950 to reduce at least some of these markers of tubular epithelial
damage in 1K/DOCA/salt-treated mice, these effects were not statisti-
cally significant (Supplementary material online, Figure S5).

3.4 MCC950 improves kidney function in
1K/DOCA/salt-treated mice
Inflammation and fibrosis of the kidneys are associated with impaired
function and a shift in the pressure-natriuresis relationship. Metabolic
cage studies were performed to assess the impact of 1K/DOCA/salt-in-
duced hypertension on kidney function, and to determine if treatment
with MCC950 protects against functional impairment. Ten days of 1K/
DOCA/salt treatment resulted in a marked increase in the volume of
urine excreted (11-fold) and in the amount of saline consumed

(five-fold;Figure 7A and B). The osmolality of the urine was approximately
3.5 times higher following 10 days of 1K/DOCA/salt-treatment than it
was prior to the induction of hypertension, including a 27-fold increase
in urinary [Naþ] (Figure 7C and D). Excessive amounts of albumin leakage
into the urine is a clinically relevant sign of kidney injury and dysfunction,
and in mice treated with 1K/DOCA/salt it was found that albuminuria
levels were increased by 18-fold (Figure 8E). In hypertensive mice that
were subsequently treated with vehicle for a further 11 days, these
parameters remained unchanged (Figure 7A–E). In contrast, MCC950-
treatment reduced urine volume, saline intake, urine osmolality, urine
[Naþ], and albuminuria, such that after 11 days all of these parameters
were lower than in the vehicle-treated animals (Figure 7A–E).

4. Discussion

The major new findings from this study are that MCC950, a selective
small-molecule NLRP3 inflammasome inhibitor, is highly effective at

A B

C

E

D

Figure 2 MCC950 reduces inflammasome priming in the kidneys of mice with 1K/DOCA/salt-induced hypertension. Effect of MCC950 on renal
mRNA expression of NLRP3 (A), ASC (B), pro-caspase-1 (C), pro-interleukin (IL)-1b (D), and pro-IL-18 (E) in mice treated with either 1K/DOCA/salt or
1K/placebo. Messenger RNA expression was measured using the comparative Ct method against GAPDH expression. Values are expressed as mean ±
SEM. *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant for one-way ANOVA followed by Newman–Keuls post hoc test.
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reducing renal inflammation and fibrosis, and improving renal function in
mice, even when administered 10 days after the establishment of 1K/
DOCA/salt-induced hypertension. Moreover, these protective effects of
MCC950 on the kidneys were associated with a modest reduction in BP
and blunted cardiac hypertrophy. Hence, together with earlier reports
of BP-lowering and renal anti-inflammatory effects of ASC-deficiency
and IL-1R antagonism,7,21 this study highlights the NLRP3 inflammasome
as a promising target for therapies aimed at reducing BP and the end-
organ damage associated with hypertension.

It is well established that hypertension is associated with increased
expression of adhesion molecules and pro-inflammatory cytokines,

and the accumulation of inflammatory T cells and macrophages in the
kidneys.5–7 Moreover, these inflammatory events are thought to con-
tribute to the renal fibrosis and damage that disrupts pressure-
natriuresis and re-sets BP at a chronically elevated level.6–8 Using
transgenic mouse models, we and others have shown that NLRP3
inflammasome activity is essential for the development of renal in-
flammation and elevated BP in response to a variety of hypertensive
stimuli including 1K/DOCA/salt and angiotensin II.7,17 While these
findings implied that the NLRP3 inflammasome is a promising target
for future anti-hypertensive therapies, it remained to be determined
(in a more clinically relevant context) whether inflammasome

A B

C D

E F

G H

Figure 3 MCC950 reduces the expression of renal inflammatory markers in mice with 1K/DOCA/salt-induced hypertension. Effect of MCC950 on re-
nal mRNA expression of IL-6 (A), IL-17A (B), tumour necrosis factor-a (TNF-a; C), IL-12 (D), intercellular adhesion molecule-1 (ICAM-1; E), vascular cell
adhesion molecule-1 (VCAM-1; F), chemokine C-C motif ligand 2 (CCL2; G), and osteopontin (H). Messenger RNA expression was measured using the
comparative Ct method against GAPDH expression. Values are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not sig-
nificant for one-way ANOVA followed by Newman–Keuls post hoc test.
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..inhibition could reverse BP and limit renal inflammation and dysfunc-
tion after hypertension is established. Indeed, administration of
MCC950 to mice, 10 days after induction of hypertension with 1K/
DOCA/salt, profoundly reduced renal inflammasome priming, ex-
pression of adhesion molecules, chemokines and pro-inflammatory
cytokines, and accumulation of T cells and macrophages. Intervention
with MCC950 also suppressed renal interstitial collagen deposition
and the pro-fibrotic cytokine, TGF-b. Importantly, these effects cul-
minated in improved renal function, in terms of Naþ and electrolyte
handling and less albumin leakage into the urine. Hence, our findings
provide proof-of-concept that pharmacological modulation of inflam-
masome activity may be a viable therapeutic strategy for limiting renal
damage, even in patients with existing disease.

Macrophages, in particular those of an M2 phenotype, are an impor-
tant source of TGF-b and other factors involved in extracellular matrix
remodelling25 and can promote fibrosis of other tissues; for example, in
the heart after myocardial infarction,26 the lungs after bleomycin
treatment,27 and the skin in experimental scleroderma.28 Furthermore,
in an alternative model of hypertension (i.e. angiotensin II-dependent)
we showed that M2-like macrophages are major contributors to fibrosis
in the aortic adventitia.23 Here, we demonstrated that 1K/DOCA/salt-
dependent hypertension involves MCC950-sensitive accumulation of
M2-like macrophages in the kidneys, consistent with the possibilities that
M2 macrophages are drivers of renal fibrosis during hypertension and

renal protection by inflammasome inhibition involves preventing the ac-
cumulation of these cells.

Another important driver of fibrosis in the kidneys is EMT, where po-
larized tubular epithelial cells assume a mesenchymal cell phenotype, en-
abling them to detach from the basement membrane, migrate through
tissues, and produce extracellular matrix components.29 Vimentin is a
commonly used marker of EMT30 and we showed that 1K/DOCA/salt
hypertension was associated with vimentin up-regulation. Furthermore,
treatment of hypertensive mice with MCC950 reduced vimentin expres-
sion suggesting that it afforded protection against EMT. Tubular epithelial
cells are known to express an NLRP3 inflammasome31 and activation of
the enzyme in this cell type has been implicated in renal injury in re-
sponse to a number of stimuli including aldosterone and angiotensin
II.7,16,17 Furthermore, a recent study demonstrated that NLRP3 is a key
mediator of EMT in the kidneys in response to hyperuricaemia, and that
this involves a direct molecular interaction between NLRP3 and Smad2/
3.32 Our present findings are consistent with such a role for NLRP3 dur-
ing 1K/DOCA/salt-induced hypertension, and highlight MCC950 as an
effective pharmacological tool for inhibiting EMT.

In addition to increasing macrophage numbers in the kidneys, 1K/
DOCA/salt promoted the accumulation of CD4þ T cells. Furthermore,
T cells were shown to be a source of the pro-inflammatory cytokine
IFN-c. Previous studies have shown that IL-18 can act in concert with IL-
12 to promote the production of IFN-c by T cells.33 Indeed, we found

A B

C

E

D

Figure 4 MCC950 reduces T cell accumulation in the kidneys of mice with 1K/DOCA/salt-induced hypertension. Flow cytometric analysis showing
the effect of MCC950 on accumulation of total CD45þ leucocytes (A), total CD3þ T cells (B), CD4þ T cells (C), CD8þ T cells (D), and interferon-
gammaþ (IFN-cþ) T cells (E) in the kidneys of mice treated with either 1K/DOCA/salt or 1K/placebo. Values are expressed as mean ± SEM. *P < 0.05,
**P < 0.01, ***P < 0.001; ns, not significant for one-way ANOVA followed by Newman–Keuls post hoc test.
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..that both of these cytokines were increased in the kidneys of 1K/
DOCA/salt-treated mice, and that MCC950 reduced expression of IL-
18 and the accumulation of IFN-c-producing T cells. Mice deficient in
IFN-c are protected from angiotensin II-dependent hypertension and
the associated renal inflammation.34 Kamat et al.34 suggested that IFN-c
promotes hypertension by increasing the abundance of the phosphory-
lated forms of the Na-K-2Cl cotransporter, Na-Cl cotransporter, and
Ste20/SPS-1-related proline-alanine-rich kinase in tubular epithelial cells,
thereby increasing Naþ reuptake. Hence, our findings imply that IFN-c
may be a common mediator of renal damage in hypertension irrespec-
tive of the stimulus and that inhibition of the NLRP3 inflammasome effec-
tively reverses activation of this pro-hypertensive pathway.

A novel finding was that MCC950 partially reversed albuminuria in
1K/DOCA/salt-treated mice, consistent with improved glomerular filtra-
tion. Curiously, while the intervention with MCC950 reduced urine out-
put, osmolality and [Naþ], it also reduced Naþ/H2O intake. This
highlights a limitation of the current model in that salt was provided to
mice ad libitum via the drinking water making it difficult to interpret
whether the reduced urine output drove the reduced saline intake, or
vice versa. A future approach to directly investigate if MCC950 alters
Naþ/electrolyte handling might involve challenging treated and
untreated animals with equal amounts of salt and volume via an intraperi-
toneal bolus.35

The intervention with MCC950 reduced hypertension by approxi-
mately 10–15 mmHg (i.e. 25% of the 1K/DOCA/salt-induced pressor ef-
fect), with reductions in both systolic and diastolic BP. This magnitude of
effect is clinically meaningful because in humans, the level of cardiovascu-
lar risk halves with every 10 mmHg reduction in diastolic BP.36

Nevertheless, the magnitude of its anti-hypertensive actions were mod-
est relative to the profound effects of MCC950 on renal inflammation
and fibrosis. Others have also found only an indirect relationship

between renal inflammation and BP following 1K/DOCA/salt-treatment.
For example, Liang et al.37 demonstrated that 1K/DOCA/salt-treated
mice genetically deficient in the chemokine, CXCL16, were markedly
protected against renal fibrosis, albuminuria, and macrophage and T cell
infiltration, but not increased BP. Conversely, using a similar intervention
protocol, we found that the IL-1 receptor antagonist (IL-1Ra), anakinra,
was comparable to MCC950 in its ability to reduce 1K/DOCA/salt-in-
duced elevations in BP, yet had little impact on renal inflammation or
leucocyte accumulation.21 A unifying explanation for these findings might
be that the two major inflammasome-derived cytokines—IL-1b and IL-
18—exert largely separate non-renal vs. renal actions, respectively.
Indeed, in support of a predominantly extra-renal role, IL-1b increases
endothelial superoxide production and impairs endothelium-dependent
relaxation in resistance-like arteries.38 Moreover, IL-1R-/- mice are fully
protected against the endothelial dysfunction which usually accompanies
aldosterone administration,39 whereas IL-1b-/- mice are not protected
against ischaemic renal injury.40 Thus, future work to directly compare
the impact of inhibition of IL-1b vs. IL-18 on 1K/DOCA/salt-induced hy-
pertension is warranted.

In addition to regulating the production of IL-1 family cytokines,
inflammasome-mediated activation of caspase-1 and subsequent cleav-
age of gasdermin D can lead to a form of programmed cell death known
as pyroptosis.41 Previous studies have reported the association between
elevated caspase-1/IL-1b expression and tubular epithelial cell death in
models of acute kidney injury including ischaemia–reperfusion and unilat-
eral ureteral obstruction and have suggested that this may be evidence
for a role of pyroptosis.42,43 Although we did not investigate directly
whether 1K/DOCA/salt-treatment is associated with tubular epithelial
cell death (or death of other inflammasome-expressing cells such as
macrophages), we did find evidence of both tubular atrophy and damage
to the epithelial brush border, both of which are indicative of epithelial

A B

C D

Figure 5 MCC950 reduces macrophage accumulation in the kidneys of mice with 1K/DOCA/salt-induced hypertension. Flow cytometric analysis
showing the effect of MCC950 on accumulation of total CD45þCD11þmyeloid lineage cells (A), total F4/80þmacrophages (B), CD206þM2-like macro-
phages (C), and CD206 M1-like macrophages (D) in the kidneys of mice treated with either 1K/DOCA/salt or 1K/placebo. Values are expressed as mean
± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant for one-way ANOVA followed by Newman–Keuls post hoc test.
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Figure 6 MCC950 reduces renal interstitial fibrosis in mice with 1K/DOCA/salt-induced hypertension. Effect of MCC950 on interstitial collagen depo-
sition (A and B) and mRNA expression levels of the collagen a-subunits Type I (C), Type III (D), Type IV (E), and Type V (F), transforming growth factor-
beta (TGF-b; G), and vimentin (VIM; H) in kidneys of mice treated with either 1K/DOCA/salt or 1K/placebo. Representative bright-field picrosirius red
stained images are shown at 40� magnification (scale = 50mm; A). Polarized picrosirius red stained images are shown at 20� magnification (scale =
50mm). Messenger RNA expression was measured using the comparative Ct method against GAPDH expression. Values are expressed as mean ± SEM.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant for one-way ANOVA followed by Newman–Keuls post hoc test.
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..cell death. Nonetheless, the fact that these processes were not pre-
vented by MCC950, suggests either that pyroptosis is not involved, or
that it occurs independently of NLRP3, possibly downstream of an alter-
native inflammasome isoform.

It remains unknown which stimuli activate the NLRP3 inflammasome
in the kidneys during 1K/DOCA/salt hypertension, but both high salt and
aldosterone—each of which are key components of the 1K/DOCA/salt
model—can act as danger signals. For example, hyperosmotic stress in-
duced by high [Naþ] is detected as a danger signal by cultured macro-
phages and results in oligomerization of both NLRP3 and NLRC4
inflammasomes, caspase-1 activation and IL-1b production.44 Further,
stimulation of isolated macrophages with aldosterone induces caspase-1
activation and IL-18 production, and is attenuated by eplerenone, an
antagonist of the mineralocorticoid receptor.16 Interestingly, recent
evidence suggests that mineralocorticoid receptor antagonists, including
eplerenone and spironolactone, are effective in the treatment of many
patients with resistant hypertension.45 Thus, it would be interesting to
determine whether inflammasome inhibition contributes to the

beneficial effects of mineralocorticoid receptor antagonists, and whether
drugs that directly target the inflammasome (e.g. MCC950) or its cyto-
kine products may be effective therapies for resistant hypertension. On
this latter point, canakinumab, a therapeutic monoclonal antibody against
IL-1b reduced cardiovascular events by 15% in patients with previous
myocardial infarction and evidence of systemic inflammation.46 The pro-
tective effects of canakinumab occurred independently of any actions on
plasma lipids, but it was not reported whether IL-1b inhibition lowered
BP in these patients. It will thus be interesting to determine whether an
anti-hypertensive action of canakinumab contributed to its protective
actions against cardiovascular events in high risk patients.

5. Conclusion

In conclusion, this study demonstrates that pharmacological inhibition of
NLRP3 with MCC950 protects mice from the renal dysfunction, fibrosis
and inflammation associated with the development of 1K/DOCA/

A B

C

E

D

Figure 7 MCC950 improves kidney function in mice with 1K/DOCA/salt-induced hypertension. Effect of MCC950 on volume of urine excreted (A),
volume of saline consumed (B), urine osmolality (C), urine [Naþ] (D), and albuminuria (E) in mice treated with either 1K/DOCA/salt or 1K/placebo.
Values are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 for two-way repeated measures ANOVA followed by Newman–Keuls post hoc
test.
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.
salt-induced hypertension. Although several questions remain about the
mechanisms that contribute to these protective actions of MCC950, our
findings support the concept that drugs targeting inflammasome activity
hold potential for treatment of hypertension and renal damage. Indeed,
the favourable pharmacodynamic (IC50 for NLRP3 < 10 nM) and phar-
macokinetic (oral bioavailability of 68%)18 properties of MCC950 high-
light it as a promising lead for the development of such drugs.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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